31 research outputs found

    A Dynamical Analysis of the Dust Tail of Comet C/1995 O1 (Hale-Bopp) at High Heliocentric Distances

    Full text link
    Comet C/1995 O1 (Hale-Bopp) has provided an unprecedented opportunity to observe a bright comet over a wide range of heliocentric distances. We present here Spitzer Space Telescope observations of Hale-Bopp from 2005 and 2008 that show a distinct coma and tail, the presence of which is uncommon given its large heliocentric distance (21.6 AU and 27.2 AU, respectively). The morphology of the dust is compared to dynamical models to understand the activity of the comet. Our analysis shows that the shape of Hale-Bopp's dust tail in these images cannot be explained using the usual Finson-Probstein (solar gravity + solar radiation pressure) dynamical model. Several alternative explanations are explored. The analysis suggests that the most likely cause of the discrepancy is that the dust is being charged by the solar wind, then being affected by the interplanetary magnetic field via the Lorentz force. Though this effect has been explored previously, if correct, this seems to be the first time that the Lorentz force has been required to model a cometary dust tail. The analysis also suggests that Hale-Bopp was actively emitting particles when these images were taken, and the tail characteristics changed between observations.Comment: 23 pages, 10 figures. Accepted to Icarus on 17 March 201

    Observations of Comet 2P/Encke During the Fall 2013 Apparition

    Get PDF
    We will present preliminary results from our observational campaign of Comet 2P/Encke during its 2013 perihelion passage. At optical wavelengths Encke is an extremely dust poor comet that has in past perihelion passages emitted a gas jet in the form a sunward fan. We expect to characterize both the morphology and lightcurve of the comet. The low optical dust means that even near perihelion the nuclear signature can be obtained in lightcurve data taken with narrowband continuum filters which cut out the gas emission. The campaign will consist of both narrowband and broadband imaging as well as infrared spectroscopy. Imaging will be obtained from 8 nights on the KPNO 2.1m between Sept. 7 and 14 UT. Additionally, the Murillo Family Observatory, a 0.5m telescope on the CSUSB campus which is equipped with both broadband filters and a narrowband Hale-Bopp set of filters will be used to observe the comet every clear night the moon allows between late August and early October to obtain extensive lightcurve data. These data will overlap both the Kitt Peak observations and the infrared spectroscopy which will be obtained with the SpeX instrument at the IRTF on four nights between September 26 UT and October 2 UT

    Characterization of the High-Albedo NEA 3691 Bede

    Get PDF
    Characterization of NEAs provides important inputs to models for atmospheric entry, risk assessment and mitigation. Diameter is a key parameter because diameter translates to kinetic energy in atmospheric entry. Diameters can be derived from the absolute magnitude, H(PA=0deg), and from thermal modeling of observed IR fluxes. For both methods, the albedo (pv) is important - high pv surfaces have cooler temperatures, larger diameters for a given Hmag, and shallower phase curves (larger slope parameter G). Thermal model parameters are coupled, however, so that a higher thermal inertia also results in a cooler surface temperature. Multiple parameters contribute to constraining the diameter. Observations made at multiple observing geometries can contribute to understanding the relationships between and potentially breaking some of the degeneracies between parameters. We present data and analyses on NEA 3691 Bede with the aim of best constraining the diameter and pv from a combination of thermal modeling and light curve analyses. We employ our UKIRT+Michelle mid-IR photometric observations of 3691 Bede's thermal emission at 2 phase angles (27&43 deg 2015-03-19 & 04-13), in addition to WISE data (33deg 2010-05-27, Mainzer+2011). Observing geometries differ by solar phase angles and by moderate changes in heliocentric distance (e.g., further distances produce somewhat cooler surface temperatures). With the NEATM model and for a constant IR beaming parameter (eta=constant), there is a family of solutions for (diameter, pv, G, eta) where G is the slope parameter from the H-G Relation. NEATM models employing Pravec+2012's choice of G=0.43, produce D=1.8 km and pv0.4, given that G=0.43 is assumed from studies of main belt asteroids (Warner+2009). We present an analysis of the light curve of 3691 Bede to constrain G from observations. We also investigate fitting thermophysical models (TPM, Rozitis+11) to constrain the coupled parameters of thermal inertia (Gamma) and surface roughness, which in turn affect diameter and pv. Surface composition can be related to pv. This study focuses on understanding and characterizing the dependency of parameters with the aim of constraining diameter, pv and thermal inertia for 3691 Bede

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo
    corecore